Long-Lasting Effects of Early-Life Antibiotic Treatment and Routine Animal Handling on Gut Microbiota Composition and Immune System in Pigs

نویسندگان

  • Dirkjan Schokker
  • Jing Zhang
  • Stéphanie A. Vastenhouw
  • Hans G. H. J. Heilig
  • Hauke Smidt
  • Johanna M. J. Rebel
  • Mari A. Smits
چکیده

BACKGROUND In intensive pig husbandry systems, antibiotics are frequently administrated during early life stages to prevent respiratory and gastro-intestinal tract infections, often in combination with stressful handlings. The immediate effects of these treatments on microbial colonization and immune development have been described recently. Here we studied whether the early life administration of antibiotics has long-lasting effects on the pig's intestinal microbial community and on gut functionality. METHODOLOGY/PRINCIPAL FINDINGS To investigate the long-lasting effect of early-life treatment, piglets were divided into three different groups receiving the following treatments: 1) no antibiotics and no stress, 2) antibiotics and no stress, and 3) antibiotics and stress. All treatments were applied at day four after birth. Sampling of jejunal content for community scale microbiota analysis, and jejunal and ileal tissue for genome-wide transcription profiling, was performed at day 55 (~8 weeks) and day 176 (~25 weeks) after birth. Antibiotic treatment in combination with or without exposure to stress was found to have long-lasting effects on host intestinal gene expression involved in a multitude of processes, including immune related processes. CONCLUSIONS/SIGNIFICANCE The results obtained in this study indicate that early life (day 4 after birth) perturbations have long-lasting effects on the gut system, both in gene expression (day 55) as well as on microbiota composition (day 176). At day 55 high variance was observed in the microbiota data, but no significant differences between treatment groups, which is most probably due to the newly acquired microbiota during and right after weaning (day 28). Based on the observed difference in gene expression at day 55, it is hypothesized that due to the difference in immune programming during early life, the systems respond differently to the post-weaning newly acquired microbiota. As a consequence, the gut systems of the treatment groups develop into different homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of the Gut Microbiota on Vaccine Responses

Non-responsiveness or poor responsiveness to vaccines are challenging issues in vaccine development, and efforts have been made to find out the potential reasons for these conditions. Intestinal microbiome plays a key role in regulating and development of immune system and the composition and diversity of microbiota in different individuals on the one hand, and the imbalance of intestinal micro...

متن کامل

Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets

BACKGROUND Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a...

متن کامل

Intestinal microbiota composition after antibiotic treatment in early life: the INCA study

BACKGROUND The acquisition and development of infant gut microbiota can be influenced by numerous factors, of which early antibiotic treatment is an important one. However, studies on the effects of antibiotic treatment in early life on clinical outcomes and establishment and development of the gut microbiota of term infants are limited. Disturbed microbiota composition is hypothesized to be an...

متن کامل

Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initi...

متن کامل

Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior

There is increasing concern about potential long-term effects of antibiotics on children's health. Epidemiological studies have revealed that early-life antibiotic exposure can increase the risk of developing immune and metabolic diseases, and rodent studies have shown that administration of high doses of antibiotics has long-term effects on brain neurochemistry and behaviour. Here we investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015